انتخاب نمودارهای بهینه در پیش بینی اشباع و تخلخل به کمک شبکه های عصبی مصنوعی
Authors
Abstract:
This article doesn't have abstract
similar resources
کاربرد شبکه های عصبی مصنوعی در پیش بینی بارش زمستانه
پیشبینی بارش یکی از مهمترین مسائل در زمینه مدیریت بهینه منابع آب در بخشهای مختلف نظیر صنعت، شرب و کشاورزی است. پیش بینی بارش می تواند باعث جلوگیری از تلفات و خسارات ناشی از بلایای طبیعی شود. هدف از تحقیق حاضر پیشبینی بارش زمستانه استان خراسان رضوی با استفاده از شبکههای عصبی مصنوعی میباشد. بدین منظور، ابتدا سری زمانی بارش متوسط منطقهای به روش کریجینگ در طول دوره آماری به دست آورده شد. سپس...
full textحساسیت سنجی دقت شبکه های عصبی مصنوعی به کمیت داده های ورودی و مقایسه آن با پیش بینی های ANFTSدر ساخت نمودارهای پتروفیزیکی مصنوعی
full text
پیش بینی مشخصههای رطوبت تعادلی آفتابگردان به کمک مدل های تجربی و شبکههای عصبی مصنوعی
در این پژوهش، از مدل های تجربی و شبکههای عصبی مصنوعی برای پیشبینی محتوای رطوبت تعادلی بذر و مغز آفتابگردان استفاده شد. چهار مدل ریاضی هندرسون اصلاحشده، چانگ-پی فاست، هالسی و گب برای این منظور بکار رفت. دو نوع شبکة پسانتشار (پیشرو و پیشخور) مورد آزمون قرار گرفت. به منظور آموزش الگوهای ورودی، الگوریتم یادگیری لونبرگ-مارکوارت مورد استفاده قرار گرفت. محدودههای دما و رطوبت نسبی به ترتیب بین 25 ...
full textمقایسه عملکرد شبکه های عصبی مصنوعی و شبکه های عصبی موجکی در پیش بینی درصد شکستگی جو در کمباین برداشت
در این تحقیق، نحوه عملکرد شبکه های عصبی موجکی با شبکه های عصبی مصنوعی در پیش بینی درصد شکستگی دانه های جو در کمباین مقایسه شد. شبکههای مزبور به صورت تابعی از درجه حرارت هوا، سرعت کوبنده، سرعت پیشروی کمباین، فاصله کوبنده و ضدکوبنده در جلو و عقب واحد کوبنده و درصد رطوبت جو آموزش داده شد. شبکه عصبی موجکی (RASP1) با دقت 2/90 درصد در پیش بینی شکستگی دانه جو به عنوان یک جایگزین مناسب برای شبکههای...
full textMy Resources
Journal title
volume 1391 issue 89
pages 74- 78
publication date 2012-05
By following a journal you will be notified via email when a new issue of this journal is published.
No Keywords
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023